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We examine the properties of stationary, barotropic flows over isolated topographic
features such as seamounts. According to a general variational principle, flows that
maximize or minimize the energy in a set of isovortical flows are stationary and stable.
Using this, it is shown that a large class of stable and stationary attached anticyclones
exists at a seamount. Those with positive potential vorticity (PV) are maximum energy
states, while those with negative PV are minimum energy states. If the seamount is cir-
cular, there are also stable attached cyclones, but these are destabilized by irregularities
in the topographic shape, unlike the anticyclones. Numerical simulations broadly sup-
port these theoretical predictions, but also highlight the importance of time-dependent
processes, particularly in cases in which the vortex collides with the seamount.

1. Introduction
There is a long-standing interest in flow over isolated topography, such as

seamounts, with regard to both theoretical and practical issues. Trapped flows are of-
ten observed over seamounts, and these flows evidently affect the distribution and con-
centration of subsurface fauna, filter feeders and the like (e.g. Genin, Noble & Lonsdale
1989 and references therein). These flows are often so intense that they alter the
ambient vorticity and, as such, can modify the allowable frequencies of internal waves.
This in turn may affect wave breaking (Kunze & Toole 1997 and references therein).

Seamount-trapped flows are usually explained in terms of Taylor–Proudman
dynamics (e.g. Taylor 1917). Flow past an isolated obstacle in a rotating fluid is
diverted around the obstacle and generates a region of trapped circulation over it
(Greenspan 1968). If the ambient flow has zero potential vorticity (PV), the trapped
‘Taylor column’ or ‘cap’ likewise has zero PV. In a stratified fluid, the column is
bottom-trapped, possessing a vertical scale which varies with the Burgers number
associated with the bump (e.g. Hogg 1973). A Taylor cap has anticyclonic flow, and
this is generally the sense of the observed seamount-trapped currents.

There are other theories which also predict trapped flow over isolated topography.
Statistical mechanics predicts that the state of maximum entropy in a random two-
dimensional flow over topography has a non-zero mean which is anticorrelated with
the topography, yielding an anticyclonic flow over a seamount (Salmon, Holloway &
Hendershott 1976). Variational arguments suggest that such a flow also minimizes
enstrophy (squared vorticity) (Bretherton & Haidvogel 1976), a pertinent point
given that enstrophy cascades to small scales and is dissipated in two-dimensional
turbulence. The solutions obtained with this approach are the same as the mean
flow predicted by the statistical mechanics theory in the limit of infinite resolution
(Carnevale & Frederiksen 1987, referred to as CF hereinafter).
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With bottom friction, oscillating flow over an obstacle can drive a rectified flow like
a Taylor cap. Such ‘tidal rectification’ (Zimmerman 1978; Loder 1980) is a forced-
dissipative phenomenon and is to be distinguished from the inviscid or nearly inviscid
solutions above. Nevertheless, it is often invoked to explain anticyclonic flows over
seamounts.

The present work falls into the category of the inviscid theory. According to a
classical variational principle, a flow that maximizes or minimizes the energy in a
set of isovortical flows is stationary and stable (Arnol’d 1978). (‘Isovortical flows’
will be defined in § 2; essentially, their PV fields can be made identical by some
incompressible deformation.) This variational principle was generalized by Johnson
(1978) to geophysical flows with topography.

Here we use a special case of Johnson’s principle, where we restrict attention
to small-amplitude topography (i.e. the quasi-geostrophic limit), and to flow that is
quiescent at infinity. We use it to prove the existence of a large family of stable
monopole vortices attached to a given localized topographic anomaly. Some of these
flows are global energy maxima, and some global minima. The attached dipole vortex
solutions found numerically by Johnson (1978), by contrast, are local maxima.

Note that we use the full set of invariants, including the isovortical constraint. This
is the main difference to the variational approach of Bretherton & Haidvogel (1976)
and CF, who used only the quadratic invariants. We therefore find a larger set of
stationary and stable flows, which includes both Taylor caps and the solutions found
by CF as subsets.

Finally, we want to mention a different variational principle proposed by Shnirelman
(1993). It seems to be capable of giving other stationary solutions than those given
by the variational principle used here, although the relation between the two different
principles is not clear to us.

In addition to the theory, we present results from numerical simulations. These
are done in order to examine whether the predicted stable flows can arise naturally
as a result of the time-dependent evolution. As the initial condition, we use various
non-stationary vortices near or on top of a seamount. We also revisit two-dimensional
turbulence over a bump. The simulations are broadly supportive of the theoretical
predictions, although time-dependence can produce exotic and interesting final states.

2. Theory
2.1. Conservation laws and variational principle

The basic equation used in the present work is the barotropic vorticity equation,

∂

∂t
∇2φ + J (φ, ∇2φ + h) = 0, (1)

where φ is the streamfunction and J denotes the Jacobian: J (f, g) ≡ ∂xf ∂yg−∂yf ∂xg.
This equation describes the Lagrangian conservation of PV, i.e. dq/dt = 0. The PV is
defined by

q ≡ ω + h(r), (2)

where ω = ∇2φ is the relative vorticity, and h(r) is the height of the bottom topography
relative to a constant background value. We will study a localized topographic feature
on an infinite plane.

The total energy of a flow is given by (1/2)
∫

(∇φ)2 dr . However, this is infinite
for two-dimensional flows with non-zero circulation, and it is therefore customary to
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replace it by the conserved and finite integral E, defined by

E = −1

2

∫
ωφ dr

= − 1

4π

∫ ∫
[q(r) − h(r)][q(r ′) − h(r ′)]ln|r − r ′| dr dr ′, (3)

which can also be written as

E = − 1

4π

∫ ∫
q(r)q(r ′)ln|r − r ′| dr dr ′ +

∫
qη dr − 1

2

∫
hη dr, (4)

where we defined

η(r) =
1

2π

∫
h(r ′)ln|r − r ′| dr ′, (5)

so that

∇2η = h. (6)

Note that the last term of (4) is independent of q .
Physically, E represents that part of the total energy which depends on the way

in which the given total amount of vorticity is distributed. Effectively, an infinite
constant has been subtracted from the total energy. It would perhaps be appropriate
to call E the ‘excess energy’, but we will (like many other authors) simply call it the
‘energy’.

The energy E is conserved regardless of the shape of the seamount. If, however,
the seamount is circularly symmetric, i.e. h = h(r), equation (1) in addition conserves
the angular momentum M:

M =

∫
qr2 dr. (7)

(The real angular momentum is infinite, but although M should perhaps be called
the ‘excess angular momentum’, we will use the simpler ‘angular momentum’.) Equa-
tion (1) also conserves an infinite family of Casimir integrals:

CF =

∫
F [q(r)] dr, (8)

where F is an arbitrary function. Flows that have the same value of all the Casimir
integrals are called isovortical flows, and perturbations of the PV-field that keep the
flow in the same set of isovortical flows are said to be isovortical perturbations. Also,
fields q(r) in the same set of isovortical flows are said to be rearrangements of each
other. A rearrangement can be thought of as an incompressible deformation.

According to a general variational principle, flows that satisfy δE = 0 for arbitrary
isovortical perturbations are stationary, i.e. satisfy J (φ, q) ≡ 0 (Arnol’d 1978). This
can be demonstrated by noting that a general first-order isovortical perturbation of
a given field q(r) (i.e. a perturbation that satisfies δCF = 0 for any F ) is given by
δq = J (ξ, q), where ξ (r) is arbitrary. The corresponding energy variation is

δE = −
∫

φδq dr =

∫
ξJ (φ, q) dr, (9)

which gives the desired result.
Moreover, if a stationary point of the energy integral is an extremum (using the

isovortical constraint), the flow is stable, analogously to Lyapunov stability for a
system with a finite number of degrees of freedom. Thus, stability is related to energy
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variations of higher order. Isovortical perturbations to all orders are given by the Lie
series

�q = δq + 1
2
δ2q + . . . = J (ξ, q) + 1

2
J (ξ, J (ξ, q)) + . . . (10)

The second-order energy variation is

δ2E = − 1

4π

∫ ∫
[δω(r)δω(r ′) + δ2ω(r)ω(r ′)]ln|r − r ′| dr dr ′.

Using (10) and the fact that δq = δω = ∇2δφ this can be rewritten as

δ2E = −1

2

∫
(δφδq + φδ2q) dr

= −1

2

∫
[δφδq − J (ξ, φ)J (ξ, q)] dr

=
1

2

∫ [
−δφδq +

dφ

dq
(δq)2

]
dr, (11)

where we assumed that the flow is stationary, so that φ and q are functionally related.
If δq and δφ are replaced by the first-order perturbations q1(r, t) and φ1(r, t), δ2E

becomes the ‘Arnol’d invariant’ A, which is conserved by the linearized equations
about any stationary flow. Arnol’d (1966) showed that if dφ/dq � c > 0 everywhere
for some positive constant c, then the flow is nonlinearly stable, in the sense that
an a priori estimate of a norm can be given. (This is usually referred to as ‘Arnol’d
stability’.) In this case, A is positive definite for arbitrary φ1.

For a minimum energy flow, i.e. a flow that minimizes E in a set of isovortical
flows, δ2E must be positive for any isovortical pertubation δq . By choosing a localized
δq with small enough spatial scale, we can make the second term in (11) dominant,
and dφ/dq must therefore be positive everywhere. Hence, a minimum energy flow is
Arnol’d stable.

For a maximium energy flow, δ2E must be negative for any isovortical pertubation
δq , which implies that dφ/dq is negative everywhere. However, dφ/dq being negative
is not a sufficient condition for Arnol’d stability, since the first term in (11) is positive.
In fact, on an infinite plane it is, in general, possible to find a perturbation φ1 for
which A is positive, even if dφ/dq is negative (Nycander 2003). Thus, δ2E is negative
for any isovortical perturbations, but not for arbitrary non-isovortical perturbations.

A maximum energy flow on an infinite plane is therefore not Arnol’d stable.
However, it is linearly stable (Nycander 1995). Also, the strongest nonlinear instability,
the explosive resonant interaction, is prevented, since it requires the existence of
isovortical perturbations with opposite signs of δ2E (Vanneste 1995). A maximum
energy flow is therefore nonlinearly stable in a practical sense, as also argued by
Benjamin (1976), but this cannot be formalized to a statement of stability in some
norm.

We will not here try to prove sign definiteness of δ2E directly, as in Arnol’d stability.
Rather, we will show the existence of a global energy maximum or minimum. By
implication, the corresponding flow is stationary and stable, and δ2E is sign definite
for isovortical perturbations. A similar approach has been used to show the existence
of stationary vortex rings and dipole vortices (Benjamin 1976; Burton 1987, 1988).
It has also been used to show the existence of a large class of stationary and stable
localized vortices in a uniform background shear flow, both for two-dimensional flow
(Nycander 1995; Emamizadeh 2000) and three-dimensional quasi-geostrophic flow
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(Burton & Nycander 1999). This was done by proving the existence of a maximum
energy flow. In the present case, the approach will be used to understand the dynamics
of vortices attached to seamounts. We will show the existence of both maximum energy
flows and minimum energy flows.

2.2. Flat topography or circular seamount

We begin with the simple uniform case, i.e. h ≡ 0. In this case, any circular vortex
with a monotonic PV-profile is a maximum energy flow, and therefore stable, as is
well known. To see this, we use an argument from Filippov & Yan’kov (1986), and
think of q as the density of some incompressible fluid. If we change the sign of
(4) and set η ≡ 0, the right-hand side has exactly the same form as the potential
energy owing to two-dimensional attractive gravitational forces. If q has only one
sign, it is intuitively obvious that the minimum potential energy (i.e. the maximum
of E) is attained by a circular distribution with the densest matter in the centre, the
two-dimensional counterpart of the density structure of planets and stars. This can
also be rigorously proved with the help of theorems about symmetrizations (Sobolev
1963).

Alternatively, stability can be proved by using the conservation of angular
momentum. Equation (7) can be interpreted as the potential energy of the density
distribution q(r) in an external potential well proportional to r2. The minimum of
M (or the maximum, if q is negative) is then obviously attained by a circular vortex
with monotonic PV-profile. Again, the conclusion is that such a vortex is stable.

The latter argument also holds without any change in the presence of a circular
seamount, since the angular momentum is not affected by circularly symmetric
topography. Hence, any circular vortex (cyclone or anticyclone) which has a
monotonic PV-profile and is centred on a circular seamount is stable.

2.3. Irregular seamount

We now assume that there is a localized seamount, satisfying∫
h dr = H < ∞.

For simplicity, we assume that the support of h (i.e. the region where h �= 0) is
bounded, and that h � 0. (Note that (1) is invariant to changing the sign of h, φ

and either x or y, so that a cyclone over a seamount is equivalent to an anticyclone
over a depression.) There are no other restrictions on the shape of the seamount.
The function η(r) defined in (5) then has a minimum at the seamount, and increases
outward; we have η ∼ (H/2π)ln(r) as r → ∞.

The support of q is also assumed to be bounded, and q is assumed to have the
same sign (either positive or negative) everywhere on its support.

An important solution in this case is given by q(r) ≡ 0. This is the anticyclonic
Taylor cap, with the streamfunction given by φ = −η, as can be seen from (2) and (6).
Such a vortex is obviously stable. Indeed, from (1), we see that there is no dynamics
at all, in the sense that no isovortical perturbations are possible: the set of isovortical
flows contains no other flow.

We then assume that q � 0. As in the case with flat topography, the first term of (4)
is maximized by placing fluid elements with large negative values of q as close to each
other as possible. The second term is maximized by placing fluid elements with large
negative values of q where η is small, so that the contour curves of η and q coincide.
Thus, there is almost no conflict between the requirements for maximizing the two
terms, and the maximum of the whole expression is clearly attained by a localized
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distribution of q with the minimum at the seamount, and q increasing toward zero
outward. A rigorous proof of this has been given by Nycander & Emamizadeh (2003).

This proves the existence of a large class of stationary and stable anticyclonic
vortices attached to a seamount. They are non-circular, unless h(r) is circularly
symmetric. The radial profile of q is in general monotonic, but otherwise arbitrary.
(If the topography is very irregular, so that η has several minima, the profile of the
maximizing field q may actually be non-monotonic, but q is still localized. In what
follows, we will restrict ourselves to cases where η has only one minimum.) A vortex
of this kind exists in every set of isovortical flows for which q � 0 everywhere. It
rotates in the same direction as the Taylor cap, but faster. This set of vortex solutions
is similar to the stationary and stable vortices that exist in a uniform background
shear flow (Nycander 1995).

We then assume that q � 0. The second term of (4) is in this case maximized by
placing fluid elements with large values of q as far away from the seamount as
possible, while the first term is still maximized by placing these fluid elements as close
to each other as possible. Clearly, the maximum is not attained by a vortex attached
to the seamount.

Instead, we look for a minimum energy flow. To minimize the first term, we should
spread out the fluid elements with q > 0 as much as possible, but to minimize the
second term they should be placed at the seamount. Since these requirements are
in conflict, the situation is more delicate than before, and depends on the relative
strength of q and h.

A necessary condition for the existence of a minimum energy flow in this case is

∫ R

0

q∗r dr �

∫ R

0

h∗r dr (12)

for any R > 0. Here, q∗ and h∗ are the symmetrizations of q and h, respectively.
(A symmetrization can be defined as the unique rearrangement which is circularly
symmetric and monotonic decreasing outward from the origin.)

To show this, we recall that a minimum energy flow has dφ/dq � 0 everywhere, as
was pointed out in § 2.1. Since ∇q must be directed inward in a localized vortex with
q � 0, this means that ∇φ is also directed inward. Using Gauss’ theorem, we conclude
that a minimum energy vortex satisfies

∫
S
ω dr < 0, where S is any region bounded by

a streamline φ =const. Since ω = q − h, this in turn implies the condition (12), which
is therefore a necessary condition for the existence of a minimum energy flow.

We have no rigorous proof that the condition (12) is also sufficient, but in the
following we will present arguments to make it plausible.

An analogy with electrostatics is useful in this case, and (3) is the most appropriate
form of the energy. If we interpret q as the density of free charges (positive), and −h as
the density of bound charges (negative) that are kept in place by some external forces,
then E is the electrostatic energy and −φ the electrostatic potential. An electrostatic
equilibrium corresponds to a minimum energy flow. In such electrostatic problems,
the charges are usually assumed to be free to be distributed arbitrarily, without any
upper bound on the charge density. This means that there are no Casimir constraints,
only the constraint defined by the total free charge Q =

∫
q dr .

If Q>H , the bound charges will be completely neutralized by the free charges
at equilibrium, so that q = h on the support of h, while the surplus charges will be
repelled toward infinity. Thus, there is no localized minimum energy state.
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If Q � H , on the other hand, all the free charges will be attracted by the bound
charges, and at equilibrium they are all situated in a central region where q = h and
the electrostatic potential −φ is constant. The only non-trivial part of the solution is
to find the boundary of this region.

Adding the Casimir constraints to this picture corresponds to q being the charge
density of some incompressible fluid. Assume first that the inequality (12) is reversed
for some R = R0. Assume also that the region where q >q∗(R0) is a simply connected
region, and apply Gauss’ theorem to the integral of ∇2φ = q − h over this region. We
find that the gradient of the electrostatic potential −φ at the bounding curve is on
average directed inward (i.e. the electrostatic force on the free charges is outward).
This is clearly impossible at equilibrium, which agrees with the conclusion above
that (12) is a necessary condition. The equilibrium is instead attained by mixing
fluid particles with different values of q , ‘diluting’ the free charges. In this way,
the effective charge density q̄ (the average of q over small scales) can be decreased
until the condition (12) is satisfied by q̄ , provided that Q � H . Thus, a sequence of
rearrangements qn for which E[qn] approaches the minimum value will be more and
more filamented, and no minimum exists in the set of rearrangements. (However,
it does exist in the closed convex hull of this set, to which q̄ belongs (Burton &
Nycander 1999).)

If, on the other hand, the condition (12) is satisfied, the free charges are unable to
neutralize the bound charges, so that even when they are closely packed, the gradient
of the electrostatic potential −φ is directed outward, i.e. dφ/dq is positive. In this
case, an electrostatic equilibrium exists, and hence a minimum energy flow. This flow
is Arnol’d stable.

We have no mathematical proof that the condition (12) is sufficient for the existence
of a minimum energy flow, but we believe the heuristic argument presented above to
be convincing. Moreover, the conclusions will be supported by numerical simulations.

From the condition
∫

S
ω dr < 0 implied by (12), it follows that the circulation along

any streamline is anticyclonic. Thus, the minimum energy vortices are anticyclones,
but, unlike the maximum energy vortices, they rotate more slowly than the Taylor
cap.

We conclude that there exists a large set of stable anticyclonic vortex solutions over
an arbitrarily shaped seamount, and they can be either maximum or minimum energy
flows. Stable cyclones, on the other hand, only exist if the seamount is circular.

The present results give some properties of the stable flows, but not the explicit
solutions. In most cases, these would have to be found numerically. A numerical
method that would be well suited for this is the pseudo-advective relaxation employed
by Carnevale & Vallis (1990). Essentially, this algorithm solves the variational problem
considered here numerically, and the present results give a prescription of how to
choose the initial condition for the relaxation procedure.

A related relaxation procedure was also used by Johnson (1978) to find stationary
dipole vortices attached to a seamount in a uniform background flow. These solutions
are local energy maxima rather than the global extrema considered here.

2.4. Comparison with the theory of Carnevale & Frederiksen

The present work is closely related to several earlier ones. Bretherton & Haidvogel
(1976) used a variational approach to examine minimum enstrophy flows over
topography, and Salmon et al. (1976) adopted a statistical mechanics approach to
predict mean flows over topography in the presence of random two-dimensional
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turbulence. These two theories were unified by CF. Let us therefore compare the
present work with that of CF.

In the variational approach of CF, the only invariants were the energy and
enstrophy. The latter is the same as the quadratic Casimir invariant, which is obtained
by setting F (q) =q2 in (8). CF moreover assumed the domain to be doubly periodic.
Our theory is for a localized topographic feature on an infinite plane; however, their
analysis can be adapted to the infinite plane.

CF considered stationary solutions of the form

∇2φ + h = µφ, (13)

where µ is a constant. Define the wavenumber spectrum as all k2 for which the
homogeneous equation

∇2φ = −k2φ (14)

has a non-trivial solution. If −µ belongs to this spectrum, (13) is singular. On a
doubly periodic domain, the spectrum is discrete, and has a low wavenumber cutoff
k2

0 . CF also assumed that there is a high wavenumber cutoff k2
1 due to finite resolution,

as would be the case in a numerical simulation. Thus, the spectrum is confined to
k2

0 <k2 < k2
1 . They then showed that solutions of the form (13) are Arnol’d stable if

µ < −k2
1 or µ > −k2

0 . (Note that the fact that −µ is outside the spectrum guarantees
that (13) has a unique solution.) They did this by showing that these solutions
minimize the energy if µ < −k2

1 or µ > 0, and that they maximize the energy if
−k2

0 <µ< 0, in all cases with the enstrophy kept fixed. (They also used an alternative
but equivalent formulation, according to which these solutions maximize or minimize
the enstrophy, with the energy kept fixed.)

At infinite resolution, the high-wavenumber cutoff goes to infinity, k1 → ∞, and
on an infinite plane, the low-wavenumber cutoff goes to zero, k0 → 0. Moreover, the
spectrum becomes continuous, and covers the whole range 0< k2 < ∞. Thus, for this
case, their theory shows that solutions to (13) are nonlinearly stable minimum energy
flows if µ > 0. These are also the values of µ for which (13) has a unique solution.
How, then, do these flows correspond to our theory?

Suppose that h is positive and describes an isolated seamount with a single
maximum point. Then, assuming that µ > 0, the solution φ defined by (13) is positive,
has a maximum at the seamount and goes to zero at infinity. (This can be seen by
expressing the solution in terms of the Green’s function.) Thus, this is an anticyclone.
Moreover, from the relation q = µφ, we find that q > 0. Thus, this anticyclone rotates
more slowly than the Taylor cap, and corresponds to a minimum energy vortex in
our theory.

Since the circulation along any streamline is anticyclonic, applying Gauss’ theorem
to the integral of (2) gives the inequality∫

S

q dr <

∫
S

h dr, (15)

where S is the area inside any streamline. This implies that (12) is satisfied.
The solution of (13) decays exponentially as r → ∞, i.e. it describes a ‘shielded’

vortex, in which a core of negative relative vorticity ∇2φ is surrounded by a shield
with positive relative vorticity. Hence, q <h in the core, while q >h in the shield.
Integrating (2) over the whole plane, we obtain Q =H , where Q =

∫
q dr . Thus, we

are on the boundary of the necessary condition Q � H found in our analysis.
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We conclude that the stable solutions of CF correspond to minimum energy
vortices in our theory. However, the maximum energy vortices in our theory have
no counterpart in their theory, nor do the minimum energy vortices with Q < H , i.e.
those which are unshielded or only partly shielded. In fact, even most of the shielded
minimum energy vortices, satisfying Q =H , have no counterpart in their theory, since
few sets of isovortical flows give a linear relation q = µφ. The set where q is piecewise
constant is one example which cannot give such a linear relation. So the flows of CF
are a small subset of the stable solutions identified herein.

CF also considered solutions with a nonlinear relation between the PV and the
streamfunction, instead of (13). In particular, they discussed the consequences of
such solutions for the statistical mechanics theories. However, they did not try to
characterize such nonlinear solutions or show that they exist, as has been done here.

3. Experiments
3.1. Model

The preceding considerations pertain to steady flows, but do not address the question
of how such flows could arise. Furthermore, the arguments in support of the minimum
energy vortex are not rigorous. To see which solutions might occur as a result of the
flow evolution, we therefore conducted a series of numerical simulations. The initial
conditions were rather idealized, for instance an isolated vortex and a seamount.

We thus used a numerical model to solve (1). The model is barotropic, quasi-
geostrophic, doubly periodic and fully spectral and is described by Flierl, Malanotte-
Rizzoli & Zabusky (1987). It employs a leap-frog time step with an occasional
Euler step for stability. Advection is computed as described by Patterson & Orszag
(1971), but without dealiasing (which produced identical results but with 50% longer
integrations). Dealiasing is essential if we wish to conserve enstrophy; however,
enstrophy is removed in the present simulations at small scales (see below).

We will examine two types of experiment, one with a single vortex and a second
with an initially random (turbulent) field. The vortex runs were made with 1282

Fourier modes (and hence grid points in real space). The results with 642 modes were
in most instances very similar. Enstrophy was removed via an (spectral) exponential
wavenumber cutoff filter. This removes small-scale vorticity, but is less corrosive
to vorticity maxima than biharmonic friction (LaCasce 1998). Nevertheless, some
biharmonic friction was used to smooth small scales for presentation purposes in
the figures; biharmonic friction was not used, for example, when we needed to make
quantitative comparisons of the circulation over a seamount (to reduce the possibility
of viscous effects on the trapped vorticity). The turbulence runs were made with 2562

modes and only the wavenumber filter. Runs made with only 1282 modes produced
qualitatively similar results.

3.2. Single vortices

We consider the vortex simulations first. In all of these, the initial condition was
a circularly symmetric vortex; in general, only the seamount was altered. The
experiments can be broken into four subgroups. The first two (denoted S#) use
a symmetric seamount and a vortex initially either aligned or unaligned with the
seamount, respectively; the two additional sets (A#) concern aligned and unaligned
vortices over an asymmetric seamount. The symmetric seamount had a Gaussian
profile with maximum height H ; the asymmetric seamount had a Gaussian profile in
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Experiment H, rx/ry A δx Comments

S1 2.0, 0.3/0.3 2.0 0 Stable
S2 2.0, 0.3/0.3 −2.0 0 Stable
S3 2.0, 0.3/0.3 −2.0 0.3 Cap (AC) with C satellite
S4 2.0, 0.3/0.3 2.0 0.3 C satellite
S5 2.0, 0.3/0.3 −2.0 0.6 Cap (AC) with dipole
S6 2.0, 0.3/0.3 2.0 0.6 C satellite, perturbed
A1 2.0, 0.6/0.3 −2.0 0 Cap (AC), stable
A2 2.0, 0.6/0.3 2.0 0 Fission, 2 C satellites
A3 2.0, 0.6/0.3 −2.0 0.3 Cap (AC), C satellite
A4 2.0, 0.6/0.3 2.0 0.3 Fission, 2 C satellites
A5 2.0, 0.6/0.3 −2.0 0.6 Cap (AC), C satellite
A6 2.0, 0.6/0.3 2.0 0.6 C satellite, weak AC cap
A7 2.0, 0.6/0.3 −3.0 0 Cap (AC), negative PV
S7 2.0, 0.3/0.3 −3.0 0.6 Cap (AC), negative PV, dipole
S8 2.0, 0.3/0.3 −1.5 0.6 Cap (AC), positive PV, dipole
A8 1.0, 0.6/0.3 2.0 0 Fission, 2 C satellites
A9 0.25–0.9, 0.6/0.3 2.0 0 Single stable C

Table 1. Initial vortex experiments. The Gaussian seamount parameters are given in the second
column, and the vortex amplitude in the third. In all cases, the vortex radius was r0 = 0.3. The
fourth column indicates the separation between the vortex and seamount centres. The fifth
includes comments on the results.

both x- and y- directions, but with a larger e-folding scale in x than y (recall that
without β the field is otherwise rotationally invariant).

The initial vortex was specified with a Gaussian vorticity profile, ζ = A exp[−(r/r0)
2].

Such vortices are frequently observed in freely evolving two-dimensional turbulence
simulations (e.g. McWilliams 1990). Using such a vortex poses a difficulty with this
model, whose integrated vorticity is necessarily zero (from periodicity). In practice,
the model adds or subtracts a constant value of vorticity from the background to
offset the vortex circulation. While not desirable, the background field was evidently
too weak to affect the vortex–seamount interaction. An alternative choice is a vortex
with a Gaussian streamfunction, which has zero integrated vorticity. However, the
Gaussian streamfunction vortex is barotropically unstable and so evolves into a
tripolar structure (e.g. Carton 1989); this obviously would alter the interaction with
topography.

The vortex experiments are given in table 1.
The first cases are with a circular seamount. In experiments S1–S2, the vortex was

initially aligned with the seamount. The only perturbations of this initial steady flow
were due to numerical truncation errors. Both anticyclones and cyclones were stable,
in agreement with the theory in § 2.

In experiments S3–S4, the vortex was initially displaced from the centre of the
circular seamount by a distance equal to the vortex e-folding radius. Note that this
configuration pertains to the collision of a vortex with a seamount; now a portion
of the initial flow is cross-isobath and all vortices accordingly evolve in time. The
subsequent evolution is quite different for the cyclone and the anticyclone.

To understand why, it is useful to examine the evolution from the perspective of the
potential vorticity. With an anticyclone on one seamount flank (case S3), the initial
PV is dipolar because the topographic contribution is cyclonic. In the early evolution,
the anticyclone draws fluid off the seamount, creating a cyclonic relative vorticity
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Figure 1. Experiments S3 and S4 with (a) an anticyclone and (b) a cyclone initially unaligned
with a circular seamount. (i) The vorticity at a representative time after any initial adjustment
has occurred. The vorticity contours are ±[0.3, 6, 0, . . . , 3]. The dashed lines indicate the
middle height (h = 1.0) isobath of the seamount. (ii) Slices in the x-direction of the vorticity
(dashed line), topography (dash-dot) and their sum, the total PV (solid).

anomaly. The cyclone then shears off a portion of the anticyclone. The remainder
of the anticyclone then shifts over the seamount centre, making an anticyclonic cap,
while the ejected cyclone orbits clockwise around the seamount (i.e. with shallow
water to its right-hand side). The relative vorticity at a later time and slices of the
relative and total vorticity are shown in figure 1(a). Note that the seamount-trapped
flow has a PV which is slightly negative.

With an initial cyclone (case S4), the PV is everywhere positive because both
vortex and topographic contributions are positive. As might be anticipated from the
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Figure 2. As in figure 1, but for (a) experiments S5 and (b) S6.

theoretical arguments, the cyclone never settles into a stationary configuration; rather
it orbits clockwise around the seamount. Because of the flow contortions, a small
anticyclonic relative vorticity anomaly occasionally is seen over the seamount summit
(figure 1b), but the total PV remains positive everywhere (as it must).

In cases S5–S6, shown in figure 2, the vortices were displaced twice as far from the
seamount centre. The subsequent evolutions were similar to those in the previous two
cases, but somewhat more violent. Because the anticyclone in S5 covers less of the
seamount, the cyclonic PV anomaly associated with the seamount is stronger, as is
the relative vorticity of the fluid drawn off the seamount. The result is that the newly
formed cyclone and a portion of the anticyclone translate away as a dipole. The final
PV over the seamount in this case is slightly positive.
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Figure 3. As in figure 1, but for (a) experiments A1 and (b) A2 with an asymmetric
seamount.

With the initial cyclone (S6), the PV is again everywhere positive and the cyclone
orbits the seamount. As in S4, an anticyclone forms over the seamount summit, but
in S6 it is somewhat stronger. The evolution is otherwise very similar to S4.

Next we consider an asymmetric seamount; the seamount in all the A# cases had
a zonal e-folding scale twice the meridional scale. As before, the (initially symmetric)
vortices were placed over the seamount centre for the first two cases. The anticyclone
A1 deformed so that its streamlines were approximately parallel to the isobaths and
was stable thereafter (figure 3a). The final PV was weakly positive, although this
depends on the relative amplitudes of vortex and seamount (see below).

The cyclone A2 in contrast fissions into two vortices after roughly 4–6 eddy turnover
times. The two daughter vortices then orbit clockwise around the seamount. Over the
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Figure 4. As in figure 1, but for (a) experiments A5 and (b) A6.

top of the seamount are two weak anticyclones (figure 3b); these alternately merge
and separate as the outer cyclones precess. Note that the net PV over the seamount
is positive.

In the four final A# cases, the vortex was displaced from the seamount centre and
as with the symmetric seamount, the more extreme examples are those when the initial
vortex is farther away. The anticyclone A5 draws fluid off the seamount, generating
a cyclonic relative vorticity anomaly as in cases S3 and S5. As in S3, the cyclone
remained near the seamount (after being sheared in two by the anticyclone) and
thereafter orbited clockwise around the seamount. An anticyclonic cap with weakly
positive PV was formed over the seamount (figure 4a).

The initial cyclone A6, on the other hand, undergoes a strongly time-dependent
evolution, splitting into several pieces which then orbit clockwise around the seamount.
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Some of the pieces merge thereafter, only to split again later on. As in A2, there is a
region of negative relative vorticity at the seamount summit, though the total PV is
still positive (figure 4b).

The details of the final state vary somewhat depending on the relative amplitudes
of the vortex and the seamount. We consider now additional experiments in which
we varied either the vortex or seamount amplitude (experiments A7–A9 and S7–S8
in table 1).† We consider the anticyclone first, and then the cyclone.

We return first to the anticyclone initially aligned with the seamount. As stated, the
flow evolves only when the seamount is asymmetric. Experiment A7 (not shown) is
like experiment A1 except that the anticyclone is 50% stronger. As in A1, the vortex
deforms to make a cap over the seamount. However, where the final PV was weakly
positive before, it is now weakly negative. To quantify the difference, we compare
the PV integrated over a region bounded by an isobath (h = 1.0), normalized by the
integrated topographic height. In A1, this ratio is about +0.15 whereas it is nearer
−0.17 in A7. Perhaps significantly, the region where the PV is most negative in A7 is
localized over the seamount summit; on the flanks, the PV is nearly zero. Thus, the
sign of the final seamount PV can be either positive or negative.

With unaligned anticyclones, the final PV likewise can vary. In experiments S4 and
S6, a cap formed over the seamount with a mean PV inside the h = 1.0 isobath of
about 0.10. In experiments S7 and S8, the anticyclone is 50% stronger and 25%
weaker, respectively (figure 5). In S7, the mean PV is around −0.17 and in S8
around 0.23. Decreasing/increasing the vortex amplitude further yielded similarly
more positive/negative final PV.

With regard to the cyclone, varying the seamount (or vortex) amplitude produced
in most cases similar results: unsteady evolution, with satellite vortices orbiting the
seamount. The only case in which the outcome changed qualitatively was for the
vortex aligned with an asymmetric seamount. In case A2, the vortex split into two
smaller satellites; but fission need not occur if the seamount amplitude is smaller.
In case A8, the seamount is half as high as in A2, and the vortex still splits in two
(figure 6a). Fission also occurs with a seamount amplitude of 0.95. However, with an
amplitude of 0.9 or less (case A9), the vortex does not break in two; rather, the vortex
deforms into an ellipse whose major axis is perpendicular to that of the seamount
(figure 6b). The vortex oscillates thereafter, so that the major axis swings left and
right, but is otherwise stable. The end state thus depends sensitively on the seamount
amplitude.

Why is this? As noted, the initial PV with a cyclone and seamount is everywhere
positive. If they are aligned and the seamount is asymmetric, the asymmetry of the PV
will depend on the relative contributions of the vortex and seamount. If the seamount
dominates, the PV is similarly deformed. For flows without topography, it is known
that a strong deformation causes fission (e.g. Dritschel 1986). The converse is that
two like-signed vortices will merge if nearer than a critical distance. This is similar to
what is seen here: if the single vortex is ‘stretched’ beyond a critical distance by the
seamount, it splits.

To summarize, we observe distinctly different evolutions for the anticyclone and for
the cyclone, in line with the theoretical considerations. Steady seamount-trapped flows
are observed only in the former case. In the non-trivial cases in which the anticyclone

† Note that the effects of changing the seamount height or vortex amplitude are the same. From
(1), scaling the seamount amplitude by a factor γ is the same as scaling the streamfunction by γ −1

and rescaling time by γ .
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Figure 5. As in figure 1, but for (a) anticyclone experiments S7 and (b) S8.

was initially displaced from the seamount centre, a portion of the initial vortex would
shift over the seamount centre (the rest being lost following an interaction with the
fluid stripped off the seamount, of cyclonic vorticity). The PV of the trapped flow
could be either positive or negative, supporting the presence of both maximum and
minimum energy vortices.

The cyclone, which in combination with the seamount has a single-signed PV field,
is trapped in the vicinity of the seamount, lacking an anticyclonic partner with which
it can translate away. The resulting field can be strongly time-dependent, with the
cyclone orbiting clockwise around the seamount and in some cases breaking into
smaller vortices. A steady end state occurred only when the cyclone was initially
aligned with a circularly symmetric seamount.
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Figure 6. As in figure 1, but for experiments A8 and A9. The seamount height is 1.0 in
(a) and 0.9 in (b). The dashed lines indicate the isobath at the seamount mid-height ((a) h = 0.5,
(b) h = 0.45).

3.3. Turbulence

The vortex spin-down experiments are somewhat artificial in that a vortex is unlikely
to materialize over a seamount (and particularly over its centre). A more realistic
approach would be to have a flow in which vortices form independently and then
interact with the topography. That is the goal of the last set of experiments, in which
we begin with a random turbulent flow.

For these cases, we chose an initial flow with a specified wavenumber spectrum and
random phases. As is well-known, the energy in such a turbulent, two-dimensional
flow ‘cascades’ to larger scales (Kraichnan 1967; Kraichnan & Montgomery 1980).
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Also well-known is that such spin-down experiments usually produce a field of long-
lived vortices, in which like-signed vortices continually merge to form larger ones
(e.g. McWilliams 1984). Many others have examined topographically trapped flows
in the presence of freely evolving turbulence, most recently Merryfield, Cummins &
Holloway (2001; and references therein). Our focus is somewhat different, on the
mean PV over the seamount.

We took the initial spectrum to have zero energy at wavenumbers smaller than 14,
and to vary as κ6/(κ + 2κ0)

18 at larger wavenumbers (here, κ is the total wavenumber
and κ0 = 14). The integrated kinetic energy was initially order one (yielding order
one velocities). The energy cascade to larger scales proceeds rapidly at first, but
more slowly later on. We let the adjustment proceed over an isolated seamount, and
then examined the mean streamfunction by averaging during the slow adjustment
period.

The results shown in figure 7 are representative. This seamount was like that in the
previous (A#) experiments, with a zonal e-folding scale of 0.6 and a meridional scale
of 0.3. The amplitude H =15 was somewhat larger than the r.m.s. vorticity (which
was 8.8 at t = 10 and 6.6 at t = 40), but smaller than that of many of the vortices
which emerged from the initial flow.

The instantaneous vorticity at a time after the initial adjustment and the mean
vorticity from the period t = 10 to t = 80 are shown in figure 7. The instantaneous
field is dominated by vortices with amplitudes of 50 and greater and of various sizes.
Mergers occur frequently and the background vorticity is strained and dissipated. The
seamount can be seen as a perturbed anticyclone near the domain centre; however,
the trapped vortex is clearer in the temporally averaged field (figure 7b).

The potential vorticity of the seamount-trapped flow is near zero, as can be seen in
the slice shown in figure 8(a). Nevertheless, there are deviations which averaging has
not removed, and these wiggles reflect vortices which have moved onto the topography
(as seen in figure 8b). In the absence of the deviations, the seamount PV is nearly
zero.

To examine both the vortex-induced fluctuations and the approach to a steady
state over the seamount, we monitored the PV averaged over the upper half of the
seamount (again normalized by the integrated topographic height) as a function of
time. This is shown in figure 9 for four cases with seamounts of different heights and
widths. Several points are apparent.

First, the time required to establish the mean circulation is greater if the seamount
is tall and wide (e.g. figure 9b); for the shorter or narrower seamounts, the circulation
sets up more quickly. What determines the adjustment time scale is unclear, but is
probably related to the time required for the neighbouring vortices to strip away
the fluid over the seamount summit. This evidently takes longer for taller and
wider seamounts. Recall there is no dissipation here beyond that imposed by the
wavenumber cutoff filter at small scales.

Secondly, the mean PV in all cases asymptotes to a value near zero. We recall that
the seamount PV could be slightly positive or negative in the single vortex cases.
Here, the ambient vorticity is zero, making it more likely that the seamount PV also
approaches zero.

Lastly, the PV in all cases exhibits strong episodic deviations. These are due to
vortex encounters with the seamount, even after the quiescent fluid has been stripped
away. (Note the amplitudes of the fluctuations vary primarily because the integrated
topographic height used for the normalization is different.) Curiously, the majority
of these deviations are positive, reflecting that cyclones scale the seamount more



Stable and unstable vortices attached to seamounts 89

6

5

4

3

2

1

0 1 2 3 4 5 6

y

(a)

x

6

5

4

3

2

1

0 1 2 3 4 5 6

y

(b)

x

+
–10

–2

Figure 7. The (a) instantaneous and (b) mean relative vorticities from a turbulent spin-down
experiment with an asymmetric seamount with the parameters H = 15, rx = 0.6, ry = 0.3.
(a) t = 20; (b) t = 10–80. The contour values, ±[2, 5, 10, 20, 50, 100], were chosen to highlight
both the strong vortices and the weaker seamount-trapped circulation.



90 J. Nycander and J. H. LaCasce

15

10

5

0

–5

–10

–15

0 1 2 3 4 5 6

h

ζ + h

ζ

(a)

(b)
15

10

5

0

–5

–10

–15

0 2 3 4 5 61

Figure 8. Zonal cross-sections of the relative (dashed), topographic (dash-dot) and total
(solid) vorticities from the turbulence run. (a) corresponds to the mean field and (b) to one
instantaneous field at t= 40.

frequently than anticyclones. The numbers of cyclones and anticyclones are roughly
equivalent in these experiments, so the asymmetry is not due to an asymmetry in the
background field.
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Why would cyclones be favoured over the seamount? A tempting explanation is
that they propel themselves up it, as cyclones are known to do up a linear slope
(e.g. Carnevale, Kloosterziel & van Heijst 1991). Such self-propulsion occurs because
the vortices perturb the mean PV gradient by advecting fluid across the isobaths.
However, owing to the seamount trapped flow, the mean PV is near zero, so self-
propulsion seems an unlikely explanation. Indeed, the reason for the asymmetry is
unclear, but it appears to occur regardless of the seamount height or width.

4. Summary and discussion
We have studied the dynamics of vortices attached to an isolated topographic

anomaly h, using both analytic variational methods and numerical simulations. The
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topographic anomaly was assumed to have the same sign everywhere, but otherwise
its shape is arbitrary.

According to a general variational principle, flows that maximize or minimize the
energy in a set of isovortical flows are stationary and stable. In § 2, we showed that
a large number of different sets of isovortical flows contain such an extremal flow.
Briefly, the theoretical results can be summarized as follows.

In every set of isovortical flows such that the PV-anomaly q everywhere has the
opposite sign to the topographic anomaly h, a maximum energy flow exists. This flow
is an attached vortex rotating in the same direction as, but faster than, the Taylor
cap (i.e. an anticyclone over a seamount or a cyclone over a depression).

Also, in every set of isovortical flows such that q everywhere has the same sign
as h and satisfies the inequality (12), a minimum energy flow exists. This flow is an
attached vortex rotating in the same direction as, but more slowly than, the Taylor
cap.

If the topography is circular, the conservation of angular momentum can be used
to prove the stability of any vortex with a monotonic PV profile. This also includes
vortices that rotate in the opposite direction as the Taylor cap (e.g. a cyclone over
a seamount), although these are not minimum or maximum energy flows. Hence,
the theory predicts that asymmetries in the shape of a seamount can destabilize an
attached cyclone, but not an attached anticyclone.

These stability results were confirmed by numerical simulations. When a cyclone
or an anticyclone was placed on top of a circular seamount, it remained stationary
and stable. When a circular anticyclone was placed over an elliptic seamount, it
first adjusted its shape, and the final flow was approximately stationary. By contrast,
most circular cyclones placed over an elliptic seamount rapidly split into two vortices
(unless the seamount was shorter than a critical height).

In the numerical experiments in which a vortex collided with the seamount, an
anticyclonic cap was often formed. For the cases in which the offending vortex was
anticyclonic, the resulting cap often had nearly zero PV, like a Taylor cap. However,
instances in which the resulting PV was either positive or negative were also observed,
depending on the strength of the initial vortex. We conclude that either maximum or
minimum energy vortices can occur. When the initial vortex was cyclonic, the total
PV was non-negative and the final flow was always time dependent.

In contrast to the range of possible final states in the vortex experiments,
the turbulence experiments produced Taylor caps with near zero PV. They are
presumably caused by the advection of ambient fluid, of zero mean PV, over the sea-
mount.

Of course, most seamount-like structures in the ocean are asymmetric, and
anticyclonic circulation should therefore be favoured. A possible example is the
Zapiola Drift, an isolated topographic high occurring in an abyssal plain of the
South Atlantic, where strong anticyclonic flow has been observed (Saunders & King
1995). Another example is the anticyclonic flow observed over the Fieberling Seamount
(Kunze & Toole 1997). The PV anomaly of this flow was observed to be negative.
Such a maximum energy flow cannot be explained by advection of ambient fluid.
Kunze & Toole suggest that it is maintained by tidal rectification. The present results
may help to explain the dynamic stability of this flow.

We should, of course, be cautious when comparing the present results for a simple
barotropic model to the real ocean, which is stratified. However, it has been shown
that the theoretical analysis in § 2 carries over without much change to the three-
dimensional quasi-geostrophic equation (Nycander 2003).
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